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A new model (called the Temperley-Lieb interactions model) is introduced, in 
two-dimensional lattice statistics, on a square lattice s The Temperley-Lieb 
equivalence of this model to the six-vertex, self-dual Ports, critical hard- 
hexagons and critical nonintersecting string models is established. A graphical 
equivalence of this model to the six-vertex model generalizes this equivalence to 
noncritical cases of the above models. The order parameters of a specialization 
of this model are studied. 
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1. I N T R O D U C T I O N  

An interesting property of models in statistical mechanics is the "weak 
equivalence" between different models, where they have the same partition 
function per site. One such group of models is the six-vertex (6V), the self- 
dual Potts (SDP), the critical hard-hexagon (CHH), and the critical 
separable nonintersecting string (also called the NISI (1/) models. We may 
call this the "6V set" of models for convenience. 

In 1971 Temperley and Lieb (2) showed the correspondence between 
the 6V and Potts models. Baxter ~3) later expanded this equivalence to 
include the CHH model and postulated the inclusion of the NIS1 model 
into the 6V set. Perk and Schultz (4) confirmed this prediction. The method 
of Baxter and of Temperley and Lieb was to show that certain elementary 
matrices, whose product makes up the transfer matrices (the product of the 
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transfer matrices is related to the partition function), lie in the same 
algebra for each model. This is known as the Temperley-Lieb algebra. 

A graphical equivalence of the general Potts model and a staggered 6V 
model by Baxter et al. <5) illustrated the equivalence of the partition function 
for these models. It was no surprise then, when Perk and Wu (6) and also 
Truong <7) recently constructed explicit graphical equivalences of the 
separable ql/2 state NIS model and the q-state Potts model in general. Perk 
and Wu <8) constructed the partition function of the critical NIS model on a 
square lattice using a graphical approach. 

This leads one to look for other models that may be included in this 
equivalence family. This report announces one such model on a square lat- 
tice 5e called the Temperley-Lieb interactions (TLI) model. We define this 
model by Eqs. (3.1), subject to the restrictions (4.3), (4.5), and (4.8), and a 
set S described in Section 3. The CHH model and the magnetic hard- 
squares model on the line of essential singularities are specific cases of this 
model. In Section 3 we establish, under the restriction (3.3), its equivalence 
to the 6V set  by ensuring that its local transfer matrices satisfy the 
Temperley-Lieb algebra. We then establish in general this equivalence 
graphically in Section 4. 

The new model has a large number of disposable parameters: we 
suggest in Section 5 one particular specialization as a topic for further 
study. In particular, we use the corner transfer matrix method to obtain 
order parameters in Section 6. 

2. T E M P E R L E Y - L I E B  E Q U I V A L E N C E  

The following discussion relies on the discussion in Sections 2 and 3 of 
Baxter. (3) We use a prefix B to denote equations of that paper, e.g., (B2.1). 
The partition function of any model of the 6V set can be given as (B2.1) or 
(B2.26), depending on boundary conditions. These relations give Z as a 
product of local transfer matrices Xj that depend on local face, edge, or 
vertex conditions. A linearity property gives X/the structure of (B2.16): 

X/=p(I+xU/),  j = l  ..... n (2.1) 

where n is the number of faces or edges in a row of the lattice s162 and the U/ 
matrices satisfy (B2.19), 

U 2 = q'/2Uj (2.2a) 

U/U/+_, Uj= U~ (2.2b) 

U~U/= UjUi, l i -  jl > 2  (2.2c) 
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Equations (2.2) represent the Temperley-Lieb algebra relations. It is 
shown that since the set of matrices { Uj, j =  1,..., n} form a finite-dimen- 
sional algebra, any two models with local transfer matrices satisfying (2.1) 
and (2.2), and with partition function given by (B2.26), will have equal 
partition functions. They must have the same values of p, x, and q, but 
since p is a trivial factor multiplying each local transfer matrix, the par- 
tition functions are simply related when the values of x and q correspond. 
We can then say that the models are equivalent. 

Now, as in Section 3 of Ref. 3, the 6V set of models (except the SDP) 
can easily be given as "interaction-round-a-face" (IRF) models on a square 
lattice Lf turned through 45~ Then Xj represents the "addition" of a face 
and is given by (B3.2), 

( ~ j ) a a ' = W ( o - j ,  O-j+ 1, O'j, O-j--I) 1-~ (~(o-i' O-;) 
i~ j  

where o- and o-' are two spin sets {o-1 ..... o-,} and {o-'1 ..... o-'}- 
Z is given by (B3.1) as well as (B2.26), 

(2.3) 

Z = ~ ~ w(o-,, o-j, o-k, o-,) (2.4) 
a (ijkl) 

where the sum is over all spins o-1,-.., O-N (N is the total number of sites in 
the lattice) and the product is over all N faces of the lattice. The spins can 
generally take on m values, so that the matrices Xj are of size m" x m'. 

As examples, the 6V model and the CHH model can be constructed as 
IRF models using the prescriptions (B3.12) and (B3.27): 

For the 6V model: 

(Uj)o~, = �89 - o-j_ 1 o-j+l ) exP[�89 ,(o-j + o-5)] I-[ 6(o-i, o-'i) 

where q = 4 cosh=2 and each aj takes on value - 1 and + 1 (m = 2). 
For the CHH model: 

(2.5a) 

(Uj)~o,=q( ~j+oj+~j+~+~j I)~(O-j 1, O-i l l )  l l~ (O- i ,O- ; )  (2.5b) 
i ~ j  

where q = �89 + x/-5) and o-j takes on the values 0 and 1 (m = 2). 
The spin set o- is restricted by the condition aj.o-)+l=0 for 

j =  1,..., n - 1. Similarly for a'. One can verify directly that Uj satisfy (2.2), 
and so form a Temperley-Lieb algebra. 
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3. THE M O D E L  

We define our model by giving w(a, b, c, d). In general we shall choose 

w(a, b, c, d)=fabgaa~)(a, C) + Xhbakbc 6(b, d) (3.1) 

Figure 1 illustrates the interactions involved in this model. The diagonal 
bonds represent the delta functions and the f ,  g, h, and k functions are 
weights depending on the spins of the corners of the face separated by 
those bonds. The first argument of each function is the bonded spin value 
and the other is the unbonded spin value. This means that each function is 
associated with a triangular half-face of LP, rather than an edge. There is 
therefore no reason to require that the functions be symmetric (as one 
would expect of a function dependent on one edge only). 

The spins a, b, c, d take the values 1 ..... m (or 0 ..... m - 1  as 
appropriate), where m is some given integer. In addition, throughout this 
paper we restrict all adjacent spin pairs to some given set S. Then S is the 
set of allowed spin pairs. For instance, in the CHH model (where 
a, b, c, d = 0, 1), we can take S to be the set 

s =  {(0, 0), (0, 1), (1, 0)} (3.2) 

i.e., a set of three elements, each being a pair of spins. 
In general, the number of elements of S cannot exceed m 2. We impose 

the symmetry condition that if (a, b) belongs to S, then so does (b, a). The 
functions fab, gab, hag, kab are defined only for (a, b) e S. [For  the purpose 
of evaluating the partition function Z from (2.4) and (3.1) these restrictions 
are the same as taking f, g, h, k to be zero if their arguments do not belong 
to S, and then allowing each spin to independently take all m values. We 
find it preferable to restrict the definitions of f,  g, h and k to spin pairs 
in S.] 
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Fig. 1. A graphical representation of the terms in the face weights of the TLI model. The 
'dashed' bonds make diagonally opposite spin values the same. 



A Class of IRF Models 1097 

The matrix Xj is given by (2.3). To ensure that it has the form (2.1) 
(with p = 1), we take 

f~b= gob= 1, ( a , b ) E S  (3.3) 

(In the next section we shall relax this condition.) Then Uj is the matrix 
with entries 

(Uj)~o, = h~,+~:k~,+~) 6(~rj_ 1 , oj+ 1) 1~ 6(a,, 0;) (3.4) 
i r  

where ~ and o' are the spin sets {~, ..... e,} and {~'~,..., ~',}. These spin sets 
are restricted by the condition (oj, oj+ ~)s S and (o}, o}+ 1)e S. This implies 
that U), and so X i, are generally matrices of size smaller than m~xm' .  
Only when S contains all m 2 spin pairs does Uj take on the size m"x m ~. 

If we define 

V~b = h~bk~,b, (a, b) ~ S (3.5) 

then it is shown in Appendix A that the Temperley-Lieb relations (2.2) are 
satisfied provided 

Vab Vb~ = 1, (a, b) e S (3.6a) 

2 V~ b = qt/2, Va (3.6b) 
b~(a,b)ES 

Surprisingly, this is quite a weak set of conditions: if S contains all rn 2 
spin pairs (a, b), then we have only m ( m + 3 ) / 2  restrictions on the m 2 
values of Vab. (Note that since hab and k~b need not be symmetric, neither 
need Vab.) Thus, we have found a large class of models that are all 
equivalent to the 6V, Potts, and NIS models. 

We have implicitly assumed that x is the same for all faces, which 
means that the corresponding 6V model is regular and the Potts model is 
self-dual. For q~<4 all the models are therefore critical (see Ref. 9). 
However, as will become clear in the next section, the equivalence remains 
true even if x is varied (for all the models) from face to face. Thus, it also 
links this model to the staggered 6V model and the non-self-dual, non- 
critical (and nonsolved) Potts model. 

4. G R A P H I C A L  E Q U I V A L E N C E  W I T H  A 6 V  M O D E L  

In this section we demonstrate by graphical methods the equivalence 
of a site-dependent TLI model and an inhomogeneous 6V model and also a 
general q-state Potts model with anisotropic interactions. The self-dual case 



1098 Owczarek and Baxter 

of the Potts, and the homogeneous 6V models, are equivalent to the 
homogeneous TLI model of the last section as a special case of this 
graphical equivalence. The staggered separable qm-state NIS model must 
then be equivalent to this expanded model. 

We return to the expression (3.1) for w(a, b, c, d) and no longer take 
fab, gab to be restricted by (3.3). We allow x (but n o t  Jab ..... kab ) to vary 
from face to face. Let xi be its value on face i. 

4.1. Graphical  Expansion 

From (3.1), each face function w is a sum of two terms: 

w(a, b, c, d) = wl(a, b, c, d) + wz(a, b, c, d) 

where 

and 

wl(a, b, c, d)=fabgadC~(a, C) 

w2(a, b, c, d) =Xihbakbcf(b, d) 

(4.1a) 

(4.1b) 

(4.1c) 

The N-fold product-over-faces in (2.4) can therefore be expanded as the 
sum of 2 N contributions each being a product of Wl and w2 terms. 

We can associate with each term of the product expansion a bond 
graph G on the diagonals of the lattice La. We do this by associating a 
bond appropriate to the delta function found in the term chosen from the 
weight w on each face. If we choose the first term containing 6(a, e), we 
link Spins a and c together with a north-south (NS) bond. Similarly, for 
the second term, we link b with d by an east-west (EW) bond. See Fig. 1. 

We then can write the partition function (2.4) as 

ZTLI = ~ ~ 1--I (W, or w2 factors) (4.2) 
G c~ faces 

the outer sum being over all the 2 N bond-graphs, and each face con- 
tributing either a w l  (for a NS bond) or w2 (for an EW bond). 

Within a graph G the sites of La are grouped into clusters (regarding 
isolated sites as one-component clusters). Thus, for instance, the sites A, B, 
C in Fig. 2 form a cluster. All the spins within a cluster must be equal 
(because the bonds correspond to Kronecker deltas). 

4.2. Perimeter  Polygons 

Now we surround each cluster by a polygon. To do this we consider 
the dual lattice LaD of La. Each site of Lao lies at the center of a face of La, 
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Fig. 2. A typical bond graph G showing the cluster A, B, C lying inside another  cluster. 

and hence on one of the bonds of G. We decompose 5~ D by regarding the 
bonds of G as "cutting" it, so as to separate edges on opposite sides of a 
bond as in Fig. 3. 

The effect of this is to decompose ~PD into disjoint polygons, as in 
Fig. 4. 
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Fig. 3. The two types of bond on a face of the lattice. The dashed bonds separate corners of 
the lattice and the heavy lines are the associated polygon corners. 
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Fig. 4. The polygon decomposition of the bond graph of Fig. 2. 

There is a one-to-one correspondence between graphs G and polygon 
decomposition of LfD, so we can replace the outer sum in (4.2) by a sum 
over polygon decompositions. 

We should allow for boundary effects. This can be done, but here we 
adopt the simpler viewpoint that 5(' is arbitrarily large and G consists of an 
infinite cluster with finite clusters embedded inside it. (These finite clusters 
may in turn surround smaller ones.) 

Then each polygon of LfD surrounds a finite cluster and is surrounded 
by another cluster (which may be the infinite one). Thus, with each 
polygon P we can associate an "interior" spin (that of the cluster 
immediately inside P) and an "exterior" spin (that of the cluster 
immediately outside P). 

Now consider the wl, w2 factors in (4.2). We see that the Wl term can 
be regarded as made up of the 6(a, c) factor (representing the NS bond), a 
factor fob associated with the right-hand polygon corner, and a factor gad 
associated with the left-hand polygon corner. Similarly, the w 2 term con- 
tains factors hba, kbc associated with the lower and upper polygons, as well 
as an extra factor x i (i being the label of the face). Thus, the spin-dependent 
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factor fab, gab, hab, and kab can all be associated with polygon corners as in 
Fig. 5. 

Consider a complete polygon P and define 

Q~b = fab gab, R,b = hab k~b (4.3) 

Then in Appendix B it is shown that the product of the polygon 
corner weights is 

Q,b Rab(Qab Qb-)"V(R-b Rb,) n5 (4.4) 

where a is the exterior spin of P, and b the interior; rt 7 and n5 are non- 
negative integers determined by the shape and size of P. (The total number 
of corners is 4 + 4n5 + 4n7.) 

For the more specialized model discussed in Section 3 the products 
Q,bQba and R,bRb~ are both one [in fact, for that case Q,,b= 1 and 
V~b = Rab and by (3.6a), R~bRb, = 1], so (4.4) is independent of n5 and n7. 
Let us require that this property be true generally, i.e., 

Q~bQb,= R,bRb,= 1 (a, b)eS  (4.5) 

Then the weight (4.4) is the same for all polygons, namely V~b, where 

b) 
g 

ab 

".2/  

V~b = QobR,b (4.6) 

f 
ab 

8. 

/c ' , , ,  

k ab h ab 

Fig. 5. The spin dependent functions with their associated polygon corners. The spins on 
either side of the polygons have values a and b. 

822/49/5-6-15 
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Now these relations above give (4.2) as 

Z= ~ XZ l~ Vab (4.7) 
p.d. c~ polygons 

where the outer sum is over all polygon decompositions of ~D, X is the 
product of the xi factors (one for each EW bond on G), the inner sum is 
over the values of the spins (one spin for each cluster), and the product is 
over all polygons of polygon weights Vob (a and b are the exterior and 
interior spins of the polygons under consideration). 

From (4.5), we have 

g~b Vb. = 1, (a, b) e S (4.8a) 

so we still have the relation (3.6a). Let us suppose that (3.6b) also still 
applies, i.e., 

V,b = ql/2, Va (4.8b) 
b~(a,b)ES 

A polygon may surround other polygons, which may surround other 
polygons, etc. This sequence must terminate with "elementary" polygons 
that contain no other polygons within them. Each contains a single cluster: 
the spin b of this cluster enters the a-summand in (4.7) only via a single 
factor V~b, where a is the spin exterior to the polygon. Thus we can sum at 
once over b. From (4.8), we get a factor qi/2, which is independent ofa. 

Each elementary polygon therefore contributes a constant factor ql/2 
to (4.7). Apart from this, such polygons can be ignored. But then all the 
polygons that contained only elementary polygons within them become 
themselves "elementary." The same argument applies to them, and so on. 
Finally one is left only with the unweighted sum over the m values of the 
spin of the infinite cluster, giving a factor m. Hence (4.7) reduces to 

Z =  m ~ Xq p/2 (4.9) 
p.d. 

where p is the number of polygons in the decomposition of the square 
lattice 5~ . 

4.3. S i x - V e r t e x  M o d e l  

Now consider a six-vertex model on ,L, gD, (m) where one places arows 
on the edges subject to the rule that at each site there be two arrows in and 
two out. Then there are six configurations as in Fig. 6. 
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1 2 

3 4 

5 6 

Fig. 6. The six arrow configurations of the 6V model on YD. 

For site i (on face i on 5~ let the six configurations (as labeled in 
Fig. 6) have weights 

C O l , . . . , c o 6 = l ,  1, x i ,  x i ,  s - l  ~_ x is ,  s_]_xis 1 (4.10) 

where s is some parameter. Then, by following the method of Refs. 5 and 
10 we find that the partition function Z6v of this model is given by 2 

Z 6 v = ~  X(s2+s 2)p (4.11) 
p.d. 

2 It should be noted that our weights (4.10) differ from those in (12.4.2) of Ref. 10, in that we 
are using the same orientation of Fig. 6 for all sites of YD. 
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where again the sum is over polygon decompositions of 5~ a factor x i is 
associated with site i if the decomposition there is of the EW type (upper 
edges separated from lower), X is the product of these xi factors, and p is 
the number of polygons. 

Comparing (4.9) and (4.11) and choosing s to be related to q by 

ql/2 = S 2 _~_ S - 2  (4.12) 

it follows that the partition functions of the TLI and six-vertex models are 
related by 

Z T L  I = mZ6v (4.13) 

4.4. Special Cases 

While the equivalence (4.13) is true for all choices of the face 
parameters Xl ..... XN, we are usually only interested in a system with some 
translational invariance. The most interesting case to consider is when we 
divide the faces of ~ into two classes "black" and "white," as in a checker- 
board (i.e., we divide LeD into two sublattices) and take 

x i  = x if i is a black face 
(4.14) 

xi  = y if i is a white face 

(We note that the sites on ~ are naturally divided into two sublattices by 
the diagonal interactions.) 

Then the product X in (4.7) and (4.9) is simply 

X =  xnb y ~w (4.15) 

where nb is the number of EW bonds of G on black faces and nw is the 
number on white faces. 

Then, by using the equivalence 3 between the six-vertex and Potts 
models, (5'1~ we can establish that 

ZTLI = mYN/2q N/4ZPotts (4.16) 

where Zpotts is the partition function of the q-state Ports model on a square 
lattice of N / 2  sites (actually one of the sublattices Lf), with interaction 
coefficients K and L in the horizontal and vertical directions, where 

x=(eK- -1 )q  -1/2, y=ql/Z(eL--1) -1 ( 4 . 1 7 )  

3 We can take the x I of Section 12.4 of Ref. 10 to be x and its x2 to be 1/y. 
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Explicitly, 

ZPotts=~exp[K ~ ~(si, sj)+L ~ ~(si, sk) j (4.18) 
s ~ i , j )  ~.j, k )  

where the Potts spins Sl,..., SN/2 each take on the values 1,..., q the (i, j )  
sum is over all horizontal edges of Yp (the Potts lattice), and the ( j ,  k )  
sum over all vertical edges. 

Particular interesting cases are as follows: 

(i) K, L - , 0  ( x - , 0 ,  y - ,  oo). This is the disordered limit of the Ports 
model ( T - ,  oo ). 

(ii) K, L - ,  oo (x - ,  0% y --. 0). This is the ordered limit ( T - ,  0), but 
we see that it differs from the disordered one only in the interchange of x 
and y, which is a manifestation of the duality of the Potts model. (~1) In 
either limit the sum (4.2) is dominated by the graph G consisting of an 
infinite cluster linking all sites on one sublattice of LP, the other sites each 
being isolated "islands" within it. Thus, in these limits (and to any finite 
order in a perturbation about them), we are justified in considering only a 
single infinite cluster with finite clusters embedded inside it. 

(iii) (e~--l)(eC--1)=q ( x = y ) .  This is the self-dual case of the 
Potts model, corresponding to the homogeneous six-vertex and TLI 
models. For q ~ 4 the models are critical; for q > 4 the models are at a first- 
order transition point. (9) 

5. A S P E C I F I C  E X A M P L E  OF T H E  TLI M O D E L  

We now propose an interesting specific model of the TLI type. In 
choosing the model (or any specialization of the TLI model), the value of 
m and the set S of "possible" spin pairs are first chosen. We then have the 
corner weight functions at our disposal. (We will consider a homogeneous 
model.) Instead of completely specifying f ,b,  g~ ,  h~b, and k~b, we only 
need give V~b satisfying (4.8). 

Let us choose the spins to assume the values 0 ..... r n -  1, where rn is an 
integer. We choose S as 

s =  {(ab) ab=0} (5.l) 

so at least one of a and b must be zero. Then, by using (4.8) we find that 

Voo= 1, Vob=q -I/2, Vbo=q 1/2, Vb4:O (5.2) 

and that 

ql/2(ql/2 1) = ( r n -  1) (5.3) 
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Equations (5.1)-(5.3) define our specialized TLI model (STLI model). We 
note the freedom we still have in choosing the corner weight functions, as 
they must satisfy (4.3), (4.5), and (4.6), but are not explicitly given. Note 
that in this case Vub and q are determined once the structure parameters m 
and S are given. (This is not true for more general choices of S.) 

The model belongs to the homogeneous 6V set, so must be critical for 
q ~< 4 (m ~< 3), and be at a first-order transition for q > 4 (m > 3). The par- 
tition function per site Z 1IN of the STLI model for x > 0 (the physical 
regime) is given by the six-vertex result (3) as 

{ sinh2 ) ~ _2n~sinhnusinh(2-u) 
N 1 In Z = in \s inh(2 - u) + 2 e (5.4a) ,, ~ 1 n cosh n2 

for m > 3, where x = sinh u / s inh(2 -  u), 4 cosh 2 = 1 + ( 4 m -  3) 1/2 with 
2 > 0  a n d 0 < u < 2 ,  and 

( s i n h / ~ )  f ~  cosh(~-2#)ts inh(#-V)tdt  (5.4b) 
N 1 In Z = In sin-~-fi--vi + oo t sinh ~t cosh #t 

for m < 3 ,  where x =  sin v/sin(/~ - v), 4 c o s # = l + ( 4 m - 3 )  1/2 with 
0 < # < ~ / 2 ,  and 0 < v < / ~ .  (We used f,b= gab= 1 for these results.) In the 
next section we examine to order parameters for this model. 

The CHH model is a special case, in which 

m = 2 ,  f,b = gab = 1, h~b=k~b=q(U b)/4, q = �89 + x/-~) (5.5) 

Also the STLI model with m = 3  ( q = 4 )  (e.g., f~b=g~b = 1, h~b=k~b, 
hob=2 -z/a, hb0=21/4, hoo = 1) can be seen to be the same as the magnetic 
hard-squares model (12) along its line of essential singularities. 

6. ORDER IN THE STLI MODEL (m~>3) 

We know that for m > 3 our homogeneous STLI model is at first- 
order transition point. This implies that there exists broken symmetry 
within the system and hence order. We will now investigate this order. 

In Section 4, when discussing the equivalence of any TLI model to a 
six-vertex model, we fixed the boundary effects by considering any bond 
graph G to consist of an infinite boundary cluster with finite clusters 
embedded in it. We now explore the correlation between the value of this 
boundary spin and a spin deep within the lattice. 

Let/~b be the probability that a spin Oo deep in the lattice is equal to 
a, given that the boundary spin ~ is equal to b. We define the function 
F(ao, a~) as 

F(ao, a~) = c~(a o, a) 6(a~, b) (6.1) 
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One immediately can see that 

•b = (F(O-o, o-~)> (6.2) 

and so from the formulation of the TLI model as (2.4) we have 

Y~ 6(o-o, a) 6(o-oo, b) (face weights) 
Lb = (6.3) 

~ 6(o-0, b) (face weights) 

where the sum is over all spins on the lattice 5 ~ . By using the polygon 
decomposition formulation (4.7) of the TLI model, we have 

~-.~p.d. X~_.o.' ~(o-0, a) I~polygons Vcd 
/.b - (6.4) 

2p.d. XZo-' ~Ipolygons Vcd 

where, as before, the outer sum is over polygon decompositions of 5OD, X is 
the product of x factor, the inner sum is over all spins except those in the 
boundary cluster, and the product is over all polygons of polygon weights 
V,.~ (c and d are the exterior and interior spin values of the polygons under 
consideration). We can sum out all polygons except those surrounding ao, 
as in Section 4.2, to obtain 

Lb ZLoZ%. Xq~P-'~/2(v%. 
- Zp.d. Xq p/2 (6.5) 

where l is the number of polygons surrounding o-o and the starred sum is 
restricted to those decompositions containing l polygons round ao. 

The matrix V can be diagonalized. Let {27: 7=0 ,  1 ..... m - 1 }  be the 
complete set of eigenvalues of V, and let Y be the matrix that diagonalizes 
V; thus, 

Y ' V Y =  Va (6.6) 

where (Va)~e = 2~ 6(c~, fl). We can therefore show that 

m--I 
/~ab = 2 Yby Yy-a I G(.)~2/q) (6.7a) 

7=0 

where 

G(z) = ~ zl/2~ I (6.7b) 
l=0 
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and defining ~ l as 
/ 

~, = ~* XqP/2/ ~ Xq p/2 (6.7c) 
p.d p.d. 

where the sum in (6.7b) runs through all even values of l when o 0 and o~  
lie on the same sublattice, and runs through all odd values of l when Oo 
and cro~ lie on different sublattices. This qualification of the sum (6.7b) 
results from the fact that if Oo and 000 lie on the same sublattice, only an 
even number  of polygons can lie between them. Similarly, if Oo and 000 lie 
on different sublattices, only an odd number  of polygons can between 
them. 

The task left is to calculate the ~t, since Y and 2~ are known (V is 
known). It can be seen from (6.7c) that q/~ is the probability that l polygons 
on s surround a site 00 deep in the lattice. We know that our STLI 
model is equivalent to a homogeneous 6V model on the lattice s D by 
placing arrows on the polygons in the appropriate manner. We also know 
that the homogeneous 6V model is equivalent to the dichromatic for- 
mulation of the self-dual Potts model. In another paper ~13) we introduce 
generalized percolation probabilities P ,  and P'n and show that P ,  is the 
probability that 2n polygons surround a central site on the Potts lattice 
(which is a sublattice of s Similarly, P'n is the probability that 2 n - 1  
polygons surround a central site. We can therefore identify 

~/2n ~--" Pn and ~/2n--1 ~-- P'n (6.8) 

In Ref. 13 we calculate P.  and P'. using the corner transfer matrix method; 
more precisely we find generating functions for Pn and P'n. We can 
immediately deduce 

~o oo 
G ( z ) =  ~ znpn = I] {l+x4j-2(qz--2)-}-xSJ 4} 

n=o j=l  {1 +X4j-2(q--2)+X 8j-4} (6.9a) 

when o 0 and 000 lie on the same sublattice, and 

G ( z ) =  ~ z n X/2p'~=zl/2 [] { l + x 4 ' ( q z - 2 ) + x  8'} 
n = l  j=l  {1 +X4j(q--2)+X *j} (6.9b) 

when Oo and 000 lie on different sublattices, where x+x  -~=q-2 ,  
0 < x < 1, and q = [2m - 1 + (4m - 3)1/2]/2. 

We can now find f~b- When oo is deep inside the lattice,/'~b is indepen- 
dent of the position of ao,  except insofar it depends on the sublattice. 
Using the eigenvalues of V, calculated as q~/2, 1 -  ql/2, and 0 (0 is m - 2  
times degenerate), we have 
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foo_  q + ( m -  1) G(z1) 
q + m - - 1  

1 - G ( z  1 ) 
/ d o -  q + m - 1  

q[-1 - G(zl) ]  
fiob-- q + m - - 1  

(m-- 1) + qG(Zl) + ( m -  Z)(q + m -  1) G(0) 
~bb = 

lab = 

(6.10) 

(m--  1)(q + m - -  1) 

(m-- 1) + qG(z~)- (q + m -  1) G(0) 

( m -  1 ) ( q + m -  1) 

where 1 ~< a ~< m - 1, 1 ~< b ~< m - 1, a r b, and z 1 = (q 2/2 __ 1 ) 2  with q = 
E2m-1 + (4m-3)~/2]/2. From now on we distinguish between the two 
sublattice positions of Oo relative to o~ .  When ao and a ~  lie on different 
subla~tices we use/'ab to denote f~b and G'(z) to denote G(z). Otherwise, we 
continue to use/ah and G(z). Then,/ 'ab is obtained from (6.10) by replacing 
G(z) 'with G'(z) [-note G ' ( 0 ) =  0]. 

From /ab and /'~b various measures of the order of the system are 
available. For  a disordered system we expect the probability (6.2) to be 
independent of the position o o relative to a ~ .  We also expect there to be 
no correlation between the values of ao and o~  and the states 1,..., m -  1 to 
be equivalent. Thus, in this case there should exist a parameter  u such that 

f l ~ b = / ' ~ b = l - - ( m - - 1 ) U  if a = 0  
(6.11) 

= u  if a > 0  and Vb 

So if/~b and/ 'ab do not satisfy the conditions (6.11), the model is in a 
state of some order. For  (6.11) to hold we must have 

G(zl ) = G(O) = G'(zl) = 0 (6.12) 

giving 

u = ( q + m - 1 )  -I 

We can therefore use (6.12) as a test for disorder and use G(zx), G(0), 
and --G'(Zl) [as G'(z~)  is negative] as order parameters instead O f f  a b 

and/ 'ab.  
From (6.9) we deduce that G(Zl), G(0), and - G ' ( Z l )  are 

monotonically increasing functions of m, obeying 

0 ~ G(Z1) , G(0),  - G t ( z 1 )  < 1 (6.13) 
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and are all zero at m = 3. So the m = 3 STLI model is disordered with 

u = l / 6  (6.14) 

For m > 3 the models are ordered to some extent, with the values of G(z~), 
G(0), and -G'(z~) all providing a measure of this order. At m =  oe these 
functions achieve their maximum values of 1, and so maximum order exists 
where 

/ab=f(a, b) and /"ab= lim q-1/2Vba (6.15) 
q ~ c ~  

for a, b = 0 ..... m -  1; [Vb, defined by (5.2)]. This reflects the fact that for m 
large all the spins on one sublattice (the one containing the boundary 
spins) are equal to ao~, while the other spins are independent, each spin cr 0 
having a weight proport ional  to V . . . .  0. F igure7 displays all three 
functions over a range of values of m. 

The STLI model has been defined for integer values of m and the 
order of the system has been discussed for m ~> 3. However, the functions 
G(zl), G(O), and -G ' ( z l )  all can be defined for real m>~3. We are now 
able to examine the behavior of the orders as m approaches 3 from above. 
The order functions behave as 

G(zl ) ~ exp { - 7z2/36 [ (m - 3 )/3 ] 1/2 } 

G(0) ~ 2 exp{ - ~2/16[(m - 3)/3] ,/2} 

- G ' ( Z l )  ~exp{  - ~ 2 / 3 6 [ ( m -  3)/3] 1/2 } 

(6.16) 
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Fig. 7. Order parameters G(0), G(zl), -G'(zl) over a range of m. (All three functions are 0 

at m = 3 . )  
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curve within the resolution of this graph�9 

as m approaches 3 from above (q ~ 4 +). [No te  that G(z) depends on x, q, 
and z, where x and q are functions of  m and if z = z~, it, too, is a function 
of m.] Figure 8 shows these functions close to m = 3. We note that the 
asymptot ic  equations (6.16) are reasonably good  approximat ions  only for 
m < 3.01 and so this behavior  does not  show up in the values of the order  
functions at integer values of m. 

We have a description of the order  in the system via (6.1), (6.2), (6.9), 
and (6.10) for any STLI  model  with m ~> 3. The model  with m = 3 is dis- 
ordered; at values of  m > 3  there is some order, with greater order in 
models with greater m; and the model  with m = ov has max imum order. 
We also have obtained asymptot ic  expressions (6.16) for the behavior  of 
this order for real m close to 3. 

APPENDIX A 
We show in this appendix that  condit ions (3.6a), (3.6b) are required to 

hold if Uj of  Eq. (3.4) is to satisfy the Temper ley-Lieb  relations (2.2). First 
we impose (2.2a), i.e., U 2 -  ~l/2U .j - -  ~/ j ,  j = 1,..., n: 

j �9 j + l  j j + l  j 
O-' 

• FI o;) FI 
i ~ j  i ~ j  
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We sum over a i, i C j: 

@ i # j  

~j 

which must  equal ql/2(Uj)o~,, if (2.2a) is to be satisfied. Therefore 

h,bk,b = ql/2 Va 
b~(a,b)~S 

As h,b and k~b are only defined for (a, b) e S, the sum is over b values such 
that (a, b) ~ S [this is implied by the fact that (aj+ ~, aj)  is on an edge of 
the lattice].  

Second, we impose (2.2b), i.e., UjUj+_, Uj= Uj, j=  1,..., n: 

(Uj)aa,(Ui+l)a,cr,,(Uj)a,,a,,, 

~-- 2 2 hai+l,~/krrj+,aj hai+2~j+l kaj+2a/+, ha'y'+laj' k~),+,~;,, 
~' or" 

X (~(Gj_l,  O'j +1 ) (~(0";, O'j + 2) (~(O'Y-- 1, 0"5'+, ) 

• H <) H at<, <') 1-I a(<', <") 
i # j  i~-j+ 1 i:/-j 

We sum over a;, iv~j, j +  1 and a;', i r  1: 

= ~  Z ~. Z hr162162 

! 
X ~(O'j_ 1 , O-j+ 1) r O'j§ 2) (~(O"j_ 1 , O-'.'1+1) 

l l !  II l l !  

• H a(a .<")  
i # j , j+  1 

We sum over aj'+ ~, aS+ ~, a / ,  a~ in that order,  replacing q _  ~ with q +  ~ via 
a(a j_  ~, �9  ~) wherever it occurs: 

= ho;+~., kaj+,a;+2 h,ra+2~rj+l k~/+:.j+~ hr 2 k % . w ] ,  

x a(~;_ ~, r [[  a(~,, <) 
i r j 

= (Uj)o~, h,;,+,o,,~ k,j+,,~,+ 2 h,,+2,j+, kr 

which must equal (Uj)r if (2.2b) is to be satisfied. Therefore  

h~bk,ehbake~ = 1 for (a, b) e S 

since (aj+ 1, aj+2) is an edge of the lattice. 
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It is easy to see that using Uj Uj_ 1 Uj = U) provides a similar result, as 
the summing procedure does not change. In fact 

h~j_l~jk~,j_,~jhoj~j_~k~;~j , = 1  for (aj, aj_l)~S 

is the result produced. So only one restriction on h~bk,b is produced from 
UjUj+~Uj. Finally, (2.2c)is automatically satisfied: 

(Uj)~,(U~)~,~. = ~ h~j.~ k~j. ,~ ho,k+,~, ~ k4~ ,~Z 
a' 

x6(o~+ ,,~++,)a(~;~_~, ~;,+,) l-[ a(o-,, o;) ~ a(o-;, o-;') 
i # j  / ~ k  

Now p j - k J  ) 2  implies j C k +  1 and jCk.  Let us separate the sums over 
a~ and a2 and sum over these spins: 

xa(aj_l,ai+1)F(ak_l,ak+l) f l  F(a/ ,a; ' )  
i c j ,  k 

But this is symmetrical in j and k, and so equals (Uk)o~,(Uj)~,~,,. 

APPENDIX  B 

In this appendix we show that the product of corner weights around 
any complete polygon in a polygon decomposition of ~ e  is given by (4.4). 

Let us consider one polygon. The corner can "point" in four direc- 
tions, with the inside of the polygon being on either side of the corner in 
each case. This gives eight types of polygon corners. For convenience let us 
consider arrows being placed on the edges of the polygon so as to follow 
around the perimeter in one direction. We will choose the anticlockwise 
direction, but note that these arrows are only an analytical help and can be 
chosen either way. The inside of the polygon is then always to the left of 
the direction of an arrow on any edge. To each corner we associate the 
corresponding corner weights f,b, g~b, h~b, and k,b. 

Let nl, n2, n3,/'14 (r/5, /'16, n7, n8) be the respective numbers of left-turn 
(right-turn) corners with the corner pointing in the S, N, E, W directions. 
This section details relations among the nj. The list is suffcient to obtain all 
possible relations among the nj, as will be explained. 

An observer going round the polygon in the direction of the arows 
must turn left four more times than right. This gives the relation 

nl +n2 +n3 +n4=ns+n6+nT+ns +4 (B.1) 
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An observer moving in a vertical line up the lattice S o  must leave the 
interior of P as often as he enters it. So 

n2 + ns =/71 q-/76 (B.2) 

Similarly, in the horizontal direction we get 

173 -~- //8 = /74 "{- /77 (B.3) 

The number  of sources of NW-point ing arrows is the same as the 
number of sinks, as each arrow must have a beginning and an end. 
Therefore 

n3 q- n5 =/72 @ n8 (B.4) 

Similarly, for NE-pointing arrows 

and for SW pointing arrows 

and for SE arrows 

n3+n6=-nl +n8 ( B . 5 )  

n 4 -t- n 5 = n 2 + n 7 (B.6) 

nl + nv = n4 + n6 (B.7) 

We now simplify these relations by combining them. Relations (B.2), 
(B.4), and (B.5) combine to give 

nl =nz ,  ns=n6  (B.8) 

and relations (B.3), (B.4), and (B.6) combine to give 

n3 = n4, n7 = n8 (B.9) 

Combining (B.1), (B.4), (B.8), and (B.9) results in the relations 

n l = n s +  1 (B.10) 

and 
n 3 = n T +  l (B.11) 

We can use these to express nl,..., n8 in terms of n 5 and nT: 

/ ' / 1 = ? / 2 = i " / 5 - 1 - 1  

///3=//4=/77-[ - 1 
(B.12) 

/76 ~ / / 5  

//8 ~ / 7 7  

and (B.1)-(B.7) are now all satisfied. 
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By considering polygons around a rectangular cluster we can find 
examples for which n5 and//7 take any pair of nonnegative integer values. 
This implies that there are no further independent relations among 
HI ~"'~ /"/8" 

We now form the product of all the corner weights for the polygon 

nl  n2 n3 n4 n5 n6 n7 n8 H (weights) = k~bh~b g~bfabkbahb~ gba fba 
c 

where the product is over all corners of the polygon. 
Using (B.12), we find 

(B.13) 

n5 n7 (weights) = (kubhab)(gabf~b)(kabhabkb~hb,) (g~bfab gb, fb,) 
c 

Now applying the definition (4.3), (B.14) becomes 

(B.14) 

1FI (weights) = Qab Rub(Q~,b Qb,)n7 (Rab Rb,)"5 (B. 15) 
c 

This relation (B.15) is the equation (4.4) that was presented. Note that as 
n 5 and tl 7 are independent, no less specific relations than (4.5) can be 
provided to obtain (4.7). Also, the total number of corners is 

nj = 4 + 4n 5 + 4n7 
J 
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